
GlobAl
EdiTioN

Concepts of
Programming languages
ElEVENTH EdiTioN

Robert W. Sebesta

digital resources for students
Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes,
and more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for Robert Sebesta’s
Concepts of Programming Languages, Eleventh Edition, Global Edition.

1. Go to www.pearsonglobaleditions.com/Sebesta
2. Click Companion Website
3. Click Register and follow the on-screen instructions to create a login name and password

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
digital resources that accompany your textbook.

Important:

This access code can only be used once. This subscription is valid for 12 months upon activation
and is not transferable. If the access code has already been revealed it may no longer be valid.

For technical support go to http://247pearsoned.custhelp.com

http://www.pearsonglobaleditions.com/Sebesta
http://247pearsoned.custhelp.com

This page intentionally left blank

ConCepts of
programming Languages

ElEvEnth Edition
GloBAl Edition

This page intentionally left blank

ConCepts of
programming Languages

ElEvEnth Edition
GloBAl Edition

RobeRt W. SebeSta
University of Colorado at Colorado Springs

Global Edition contributions by

Soumen Mukherjee
RCC Institute of Information Technology

arup Kumar bhattacharjee
RCC Institute of Information Technology

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Robert W. Sebesta to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Concepts of Programming Languages, 11th edition,
ISBN 978-0-13-394302-3, by Robert W. Sebesta, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a license permitting restricted copying in the
United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London
EC 1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does
the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

ISBN 10: 1-292-10055-9
ISBN 13: 978-1-292-10055-5

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset in Janson Text LT Std 10/12 by Aptara

Printed and bound by Vivar in Malaysia

Editorial Director: Marcia Horton
Executive Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Carole Snyder
Production Project Manager: Pavithra Jayapaul,

Jouve India
Procurement Manager: Mary Fischer
Senior Specialist, Program Planning and

 Support: Maura Zaldivar-Garcia

Assistant Acquisitions Editor, Global Edition:
Aditee Agarwal

Project Editor, Global Edition: Amrita Naskar
Manager, Media Production, Global Edition:

Vikram Kumar
Senior Manufacturing Controller, Production,

Global Edition: Trudy Kimber
Cover Designer: Lumina Datamatics Ltd.
Manager, Rights Management: Rachel Youdelman
Senior Project Manager, Rights Management:

Timothy Nicholls
Cover Art: Viachaslau Kraskouski/Shutterstock
Full-Service Project Management: Mahalatchoumy

Saravanan, Jouve India

http://www.pearsonglobaleditions.com

Changes for the Eleventh Edition
of Concepts of Programming Languages

• Chapter 6: Deleted the discussions of Ada’s subrange types, array initialization, records,
union types, pointers, and strong typing

• Chapter 7: Deleted the discussions of Ada operator associativity and mixed-mode
 expressions

• Chapter 8: Expanded the paragraph on F# selection statements in Section 8.2.1.5
Deleted the discussion of the Ada for statement

• Chapter 9: Added three design issues for subprograms in Section 9.3
Deleted the discussions of Ada and Fortran multidimensional parameters

• Chapter 10: Replaced example program Main_2, written in Ada, with an equivalent
 program written in JavaScript in Section 10.4.2
Changed Figure 10.9 to reflect this new JavaScript example

• Chapter 11: Deleted the discussions of Ada abstract data types, generic procedures,
and packages
Added a new paragraph to Section 11.4.3 (Abstract Data Types in Java)

• Chapter 12: Added a paragraph to Section 12.2.2 (Inheritance) that discusses access
control
Expanded the discussion of class variables in Section 12.2.2
Added a paragraph to Section 12.4.4 that discusses final classes in Objective-C
Reorganized Sections 12.5 to 12.9 into a single section
Added Table 12.1 on language design choices to Section 12.4.6.4
Added a new section, Section 6 (Reflection), including example programs in Java and C#

• Chapter 13: Deleted the discussions of Ada task termination and task priorities

• Chapter 14: Deleted exception handling in Ada
Added a new section, 14.4 (Exception Handling in Python and Ruby)

This page intentionally left blank

Preface

Changes for the Eleventh Edition

The goals, overall structure, and approach of this eleventh edition of
Concepts of Programming Languages remain the same as those of the ten
earlier editions. The principal goals are to introduce the fundamental

constructs of contemporary programming languages and to provide the reader
with the tools necessary for the critical evaluation of existing and future pro-
gramming languages. A secondary goal is to prepare the reader for the study of
compiler design, by providing an in-depth discussion of programming language
structures, presenting a formal method of describing syntax, and introducing
approaches to lexical and syntactic analysis.

The eleventh edition evolved from the tenth through several different
kinds of changes. To maintain the currency of the material, much of the dis-
cussion of older programming languages, particularly Ada and Fortran, has
been removed. For example, the descriptions of Ada’s records, union types, and
pointers were removed from Chapter 6. Likewise, the description of Ada’s for
statement was removed from Chapter 8 and the discussion of Ada’s abstract
data types was removed from Chapter 11.

On the other hand, a section on reflection that includes two complete
program examples was added to Chapter 12, a section on exception handling
in Python and Ruby was added to Chapter 14, and a table of the design choices
of a few common languages for support for object-oriented programming was
added to Chapter 12.

In some cases, material has been moved. For example, Section 9.10 was
moved backward to become the new Section 9.8.

In one case, example program MAIN_2 in Chapter 10 was rewritten in
JavaScript, previously having been written in Ada.

Chapter 12 was substantially revised, with several new paragraphs, two new
sections, and numerous other changes to improve clarity.

The Vision

This book describes the fundamental concepts of programming languages by
discussing the design issues of the various language constructs, examining the
design choices for these constructs in some of the most common languages,
and critically comparing design alternatives.

7

Any serious study of programming languages requires an examination of
some related topics, among which are formal methods of describing the syntax
and semantics of programming languages, which are covered in Chapter 3.
Also, implementation techniques for various language constructs must be con-
sidered: Lexical and syntax analysis are discussed in Chapter 4, and implemen-
tation of subprogram linkage is covered in Chapter 10. Implementation of
some other language constructs is discussed in various other parts of the book.

The following paragraphs outline the contents of the eleventh edition.

Chapter Outlines

Chapter 1 begins with a rationale for studying programming languages. It then
discusses the criteria used for evaluating programming languages and language
constructs. The primary influences on language design, common design trade-
offs, and the basic approaches to implementation are also examined.

Chapter 2 outlines the evolution of the languages that are discussed in
this book. Although no attempt is made to describe any language completely,
the origins, purposes, and contributions of each are discussed. This historical
overview is valuable, because it provides the background necessary to under-
standing the practical and theoretical basis for contemporary language design.
It also motivates further study of language design and evaluation. Because none
of the remainder of the book depends on Chapter 2, it can be read on its own,
independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax
of programming language—BNF. This is followed by a description of attribute
grammars, which describe both the syntax and static semantics of languages.
The difficult task of semantic description is then explored, including brief
introductions to the three most common methods: operational, denotational,
and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to
those Computer Science departments that no longer require a compiler design
course in their curricula. Similar to Chapter 2, this chapter stands alone and
can be studied independently of the rest of the book, except for Chapter 3, on
which it depends.

Chapters 5 through 14 describe in detail the design issues for the primary
constructs of programming languages. In each case, the design choices for sev-
eral example languages are presented and evaluated. Specifically, Chapter 5
covers the many characteristics of variables, Chapter 6 covers data types, and
Chapter 7 explains expressions and assignment statements. Chapter 8 describes
control statements, and Chapters 9 and 10 discuss subprograms and their imple-
mentation. Chapter 11 examines data abstraction facilities. Chapter 12 provides
an in-depth discussion of language features that support object-oriented pro-
gramming (inheritance and dynamic method binding), Chapter 13 discusses
concurrent program units, and Chapter 14 is about exception handling, along
with a brief discussion of event handling.

8 Preface

Preface 9

Chapters 15 and 16 describe two of the most important alternative pro-
gramming paradigms: functional programming and logic programming.
However, some of the data structures and control constructs of functional
programming languages are discussed in Chapters 6 and 8. Chapter 15 pres-
ents an introduction to Scheme, including descriptions of some of its primi-
tive functions, special forms, and functional forms, as well as some examples
of simple functions written in Scheme. Brief introductions to ML, Haskell,
and F# are given to illustrate some different directions in functional language
design. Chapter 16 introduces logic programming and the logic programming
language, Prolog.

To the Instructor

In the junior-level programming language course at the University of Colorado
at Colorado Springs, the book is used as follows: We typically cover Chapters 1
and 3 in detail, and though students find it interesting and beneficial reading,
Chapter 2 receives little lecture time due to its lack of hard technical content.
Because no material in subsequent chapters depends on Chapter 2, as noted
earlier, it can be skipped entirely, and because we require a course in compiler
design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive
programming experience in C++, Java, or C#. Chapters 10 through 14 are more
challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level.
Ideally, language processors for Scheme and Prolog should be available for
students required to learn the material in these chapters. Sufficient material is
included to allow students to dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the material
in the last two chapters. Graduate courses, however, should be able to com-
pletely discuss the material in those chapters by skipping over some parts of
the early chapters on imperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at www.
pearsonglobaleditions.com/Sebesta.

• A set of lecture note slides. PowerPoint slides are available for each chapter
in the book.

• All of the figures from the book.

A companion Web site to the book is available at www.pearsonglobaleditions.com/
Sebesta. This site contains mini-manuals (approximately 100-page tutorials) on
a handful of languages. These assume that the student knows how to program

http://www.pearsonglobaleditions.com/Sebesta
http://www.pearsonglobaleditions.com/Sebesta
http://www.pearsonglobaleditions.com

10 Preface

in some other language, giving the student enough information to complete
the chapter materials in each language. Currently the site includes manuals for
C++, C, Java, and Smalltalk.

Solutions to many of the problem sets are available to qualified instructors
in our Instructor Resource Center at www.pearsonglobaleditions.com/Sebesta.

language Processor Availability
Processors for and information about some of the programming languages
discussed in this book can be found at the following Web sites:

C, C++, Fortran, and Ada gcc.gnu.org
C# and F# microsoft.com
Java java.sun.com
Haskell haskell.org
Lua www.lua.org
Scheme www.plt-scheme.org/software/drscheme
Perl www.perl.com
Python www.python.org
Ruby www.ruby-lang.org

JavaScript is included in virtually all browsers; PHP is included in virtually all
Web servers.

All this information is also included on the companion Web site.

http://www.pearsonglobaleditions.com/Sebesta
http://www.lua.org
http://www.plt-scheme.org/software/drscheme
http://www.perl.com
http://www.python.org
http://www.ruby-lang.org

Acknowledgments

The suggestions from outstanding reviewers contributed greatly to this book’s
present form and contents. In alphabetical order, they are:

Aaron Rababaah University of Maryland at Eastern Shore
Amar Raheja California State Polytechnic University–Pomona
Amer Diwan University of Colorado
Bob Neufeld Wichita State University
Bruce R. Maxim University of Michigan–Dearborn
Charles Nicholas University of Maryland–Baltimore County
Cristian Videira Lopes University of California–Irvine
Curtis Meadow University of Maine
David E. Goldschmidt
Donald Kraft Louisiana State University
Duane J. Jarc University of Maryland, University College
Euripides Montagne University of Central Florida
Frank J. Mitropoulos Nova Southeastern University
Gloria Melara California State University–Northridge
Hossein Saiedian University of Kansas
I-ping Chu DePaul University
Ian Barland Radford University
K. N. King Georgia State University
Karina Assiter Wentworth Institute of Technology
Mark Llewellyn University of Central Florida
Matthew Michael Burke
Michael Prentice SUNY Buffalo
Nancy Tinkham Rowan University
Neelam Soundarajan Ohio State University
Nigel Gwee Southern University–Baton Rouge
Pamela Cutter Kalamazoo College
Paul M. Jackowitz University of Scranton
Paul Tymann Rochester Institute of Technology
Richard M. Osborne University of Colorado–Denver
Richard Min University of Texas at Dallas
Robert McCloskey University of Scranton
Ryan Stansifer Florida Institute of Technology
Salih Yurttas Texas A&M University
Saverio Perugini University of Dayton
Serita Nelesen Calvin College
Simon H. Lin California State University–Northridge

11

Stephen Edwards Virginia Tech
Stuart C. Shapiro SUNY Buffalo
Sumanth Yenduri University of Southern Mississippi
Teresa Cole Boise State University
Thomas Turner University of Central Oklahoma
Tim R. Norton University of Colorado–Colorado Springs
Timothy Henry University of Rhode Island
Walter Pharr College of Charleston
Xiangyan Zeng Fort Valley State University

Numerous other people provided input for the previous editions of Con-
cepts of Programming Languages at various stages of its development. All of their
comments were useful and greatly appreciated. In alphabetical order, they are:
Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, Peter Brouwer,
Margaret Burnett, Paosheng Chang, Liang Cheng, John Crenshaw, Charles
Dana, Barbara Ann Griem, Mary Lou Haag, John V. Harrison, Eileen Head,
Ralph C. Hilzer, Eric Joanis, Leon Jololian, Hikyoo Koh, Jiang B. Liu, Meiliu
Lu, Jon Mauney, Robert McCoard, Dennis L. Mumaugh, Michael G. Murphy,
Andrew Oldroyd, Young Park, Rebecca Parsons, Steve J. Phelps, Jeffery
Popyack, Steven Rapkin, Hamilton Richard, Tom Sager, Raghvinder Sangwan,
Joseph Schell, Sibylle Schupp, Mary Louise Soffa, Neelam Soundarajan, Ryan
Stansifer, Steve Stevenson, Virginia Teller, Yang Wang, John M. Weiss, Franck
Xia, and Salih Yurnas.

Matt Goldstein, editor; Kelsey Loanes, editorial assistant; Team Lead
 Product Management, Scott Disanno; Pavithra Jayapaul, and Mahalatchoumy
Saravanan, all deserve my gratitude for their efforts to produce the eleventh
 edition both quickly and carefully.

The publishers would like to thank the following for reviewing the Global
Edition:

Sandeep B. L., M. S. Ramaiah Institute of Technology
Koushik S., M. S. Ramaiah Institute of Technology
Sheena V. M., Don Bosco College

12 Acknowledgments

About the Author

Robert Sebesta is an Associate Professor Emeritus in the Computer Science
Department at the University of Colorado–Colorado Springs. Professor
Sebesta received a BS in applied mathematics from the University of Colorado
in Boulder and MS and PhD degrees in computer science from Pennsylvania
State University. He has taught computer science for more than 40 years. His
professional interests are the design and evaluation of programming languages
and Web programming.

13

This page intentionally left blank

Contents

 Chapter 1 Preliminaries 25

 1.1 Reasons for Studying Concepts of Programming Languages26

 1.2 Programming Domains ...29

 1.3 Language Evaluation Criteria ...30

 1.4 Influences on Language Design ..41

 1.5 Language Categories ...44

 1.6 Language Design Trade-Offs ..45

 1.7 Implementation Methods ..46

 1.8 Programming Environments ..53

Summary • Review Questions • Problem Set ..54

 Chapter 2 Evolution of the Major Programming Languages 57

 2.1 Zuse’s Plankalkül ...60

 2.2 Pseudocodes ...61

 2.3 The IBM 704 and Fortran ..64

 2.4 Functional Programming: Lisp ...69

 2.5 The First Step Toward Sophistication: ALGOL 6074

 2.6 Computerizing Business Records: COBOL80

 2.7 The Beginnings of Timesharing: Basic ...85

 Interview: AlAn Cooper—User Design and language Design 88

 2.8 Everything for Everybody: PL/I ...90

 2.9 Two Early Dynamic Languages: APL and SNOBOL93

 2.10 The Beginnings of Data Abstraction: SIMULA 6794

 2.11 Orthogonal Design: ALGOL 68...95

 2.12 Some Early Descendants of the ALGOLs ..97

15

16 Contents

 2.13 Programming Based on Logic: Prolog ...101

 2.14 History’s Largest Design Effort: Ada ..103

 2.15 Object-Oriented Programming: Smalltalk107

 2.16 Combining Imperative and Object-Oriented Features: C++109

 2.17 An Imperative-Based Object-Oriented Language: Java112

 2.18 Scripting Languages ..115

 2.19 The Flagship .NET Language: C# ...122

 2.20 Markup-Programming Hybrid Languages124

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises ..126

 Chapter 3 Describing Syntax and Semantics 133

 3.1 Introduction ...134

 3.2 The General Problem of Describing Syntax135

 3.3 Formal Methods of Describing Syntax ...137

 3.4 Attribute Grammars ..152

 History Note ...152

 3.5 Describing the Meanings of Programs: Dynamic Semantics158

 History Note ...166

Summary • Bibliographic Notes • Review Questions • Problem Set179

 Chapter 4 Lexical and Syntax Analysis 185

 4.1 Introduction ...186

 4.2 Lexical Analysis ..187

 4.3 The Parsing Problem ..195

 4.4 Recursive-Descent Parsing..199

 4.5 Bottom-Up Parsing ...207

Summary • Review Questions • Problem Set •
Programming Exercises ..215

 Chapter 5 Names, Bindings, and Scopes 221

 5.1 Introduction ...222

 5.2 Names ..223

Contents 17

 History Note ...223

 5.3 Variables ...224

 5.4 The Concept of Binding ...227

 5.5 Scope ..235

 5.6 Scope and Lifetime ..246

 5.7 Referencing Environments ...247

 5.8 Named Constants ..248

Summary • Review Questions • Problem Set •
Programming Exercises ..251

 Chapter 6 Data Types 259

 6.1 Introduction ...260

 6.2 Primitive Data Types ...262

 6.3 Character String Types ..266

 History Note ...267

 6.4 Enumeration Types ...271

 6.5 Array Types ..274

 History Note ...275

 History Note ...275

 6.6 Associative Arrays ..285

 Interview: roBerTo IerUSAlIMSCHY—lua 286

 6.7 Record Types ...289

 6.8 Tuple Types ..292

 6.9 List Types ...294

 6.10 Union Types ..296

 6.11 Pointer and Reference Types ..299

 History Note ...302

 6.12 Type Checking ...311

 6.13 Strong Typing ..312

 6.14 Type Equivalence ...313

 6.15 Theory and Data Types ...317

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises ..319

18 Contents

 Chapter 7 Expressions and Assignment Statements 325

 7.1 Introduction ...326

 7.2 Arithmetic Expressions ..326

 7.3 Overloaded Operators ...335

 7.4 Type Conversions ..337

 History Note ...339

 7.5 Relational and Boolean Expressions ...340

 History Note ...340

 7.6 Short-Circuit Evaluation ...342

 7.7 Assignment Statements ...343

 History Note ...347

 7.8 Mixed-Mode Assignment ..348

Summary • Review Questions • Problem Set • Programming Exercises 348

 Chapter 8 Statement-Level Control Structures 353

 8.1 Introduction ...354

 8.2 Selection Statements ...356

 8.3 Iterative Statements ...367

 8.4 Unconditional Branching ..379

 History Note ...379

 8.5 Guarded Commands ...380

 8.6 Conclusions ...382

Summary • Review Questions • Problem Set • Programming Exercises 383

 Chapter 9 Subprograms 389

 9.1 Introduction ...390

 9.2 Fundamentals of Subprograms ...390

 9.3 Design Issues for Subprograms ...398

 9.4 Local Referencing Environments ...399

 9.5 Parameter-Passing Methods..401

 History Note ...409

Contents 19

 History Note ...409

 9.6 Parameters That Are Subprograms ...417

 History Note ...419

 9.7 Calling Subprograms Indirectly ..419

 9.8 Design Issues for Functions ..421

 9.9 Overloaded Subprograms ..423

 9.10 Generic Subprograms..424

 9.11 User-Defined Overloaded Operators ...430

 9.12 Closures ...430

 9.13 Coroutines ...432

Summary • Review Questions • Problem Set • Programming Exercises 435

 Chapter 10 Implementing Subprograms 441

 10.1 The General Semantics of Calls and Returns...................................442

 10.2 Implementing “Simple” Subprograms ..443

 10.3 Implementing Subprograms with Stack-Dynamic
Local Variables ...445

 10.4 Nested Subprograms ...453

 10.5 Blocks ...460

 10.6 Implementing Dynamic Scoping ..461

Summary • Review Questions • Problem Set • Programming Exercises 465

 Chapter 11 Abstract Data Types and Encapsulation Constructs 471

 11.1 The Concept of Abstraction ..472

 11.2 Introduction to Data Abstraction ..473

 11.3 Design Issues for Abstract Data Types ..476

 11.4 Language Examples ...477

 Interview: BjArne STroUSTrUp—C++: Its Birth,
Its Ubiquitousness, and Common Criticisms .. 478

 11.5 Parameterized Abstract Data Types ..496

 11.6 Encapsulation Constructs ..500

 11.7 Naming Encapsulations ..504

Summary • Review Questions • Problem Set • Programming Exercises 507

20 Contents

 Chapter 12 Support for Object-Oriented Programming 513

 12.1 Introduction ...514

 12.2 Object-Oriented Programming ..515

 12.3 Design Issues for Object-Oriented Languages519

 12.4 Support for Object-Oriented Programming in
Specific Languages ...524

 Interview: BjArne STroUSTrUp—on paradigms and
Better programming .. 528

 12.5 Implementation of Object-Oriented Constructs552

 12.6 Reflection ...555

Summary • Review Questions • Problem Set • Programming Exercises 561

 Chapter 13 Concurrency 567

 13.1 Introduction ...568

 13.2 Introduction to Subprogram-Level Concurrency573

 13.3 Semaphores ..578

 13.4 Monitors ..583

 13.5 Message Passing ..585

 13.6 Ada Support for Concurrency ...586

 13.7 Java Threads ..594

 13.8 C# Threads ..604

 13.9 Concurrency in Functional Languages ...609

 13.10 Statement-Level Concurrency ..612

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises .. 614

 Chapter 14 Exception Handling and Event Handling 621

 14.1 Introduction to Exception Handling ..622

 History Note ...626

 14.2 Exception Handling in C++ ..628

 14.3 Exception Handling in Java ...632

 14.4 Exception Handling in Python and Ruby ...639

 14.5 Introduction to Event Handling ...642

 14.6 Event Handling with Java ...643

Contents 21

 14.7 Event Handling in C# ...647

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises .. 650

 Chapter 15 Functional Programming Languages 657

 15.1 Introduction ...658

 15.2 Mathematical Functions ..659

 15.3 Fundamentals of Functional Programming Languages662

 15.4 The First Functional Programming Language: Lisp663

 15.5 An Introduction to Scheme ...667

 15.6 Common Lisp ..685

 15.7 ML ...687

 15.8 Haskell ...692

 15.9 F# ...697

 15.10 Support for Functional Programming in Primarily
Imperative Languages ...700

 15.11 A Comparison of Functional and Imperative Languages703

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises .. 705

 Chapter 16 Logic Programming Languages 713

 16.1 Introduction ...714

 16.2 A Brief Introduction to Predicate Calculus714

 16.3 Predicate Calculus and Proving Theorems718

 16.4 An Overview of Logic Programming..720

 16.5 The Origins of Prolog ...722

 16.6 The Basic Elements of Prolog ..722

 16.7 Deficiencies of Prolog ...737

 16.8 Applications of Logic Programming ...743

Summary • Bibliographic Notes • Review Questions • Problem Set •
Programming Exercises .. 744

 Bibliography ... 749

 Index ... 761

This page intentionally left blank

ConCepts of
programming Languages

ElEvEnth Edition
GloBAl Edition

This page intentionally left blank

25

 1.1 Reasons for Studying Concepts of Programming Languages

 1.2 Programming Domains

 1.3 Language Evaluation Criteria

 1.4 Influences on Language Design

 1.5 Language Categories

 1.6 Language Design Trade- Offs

 1.7 Implementation Methods

 1.8 Programming Environments

1
Preliminaries

26 Chapter 1 Preliminaries

Before we begin discussing the concepts of programming languages, we must
consider a few preliminaries. First, we explain some reasons why computer
science students and professional software developers should study general

concepts of language design and evaluation. This discussion is especially valuable
for those who believe that a working knowledge of one or two programming lan-
guages is sufficient for computer scientists. Then, we briefly describe the major
programming domains. Next, because the book evaluates language constructs and
features, we present a list of criteria that can serve as a basis for such judgments.
Then, we discuss the two major influences on language design: machine architecture
and program design methodologies. After that, we introduce the various categories
of programming languages. Next, we describe a few of the major trade- offs that
must be considered during language design.

Because this book is also about the implementation of programming languages,
this chapter includes an overview of the most common general approaches to imple-
mentation. Finally, we briefly describe a few examples of programming environments
and discuss their impact on software production.

1.1 Reasons for Studying Concepts of Programming Languages

It is natural for students to wonder how they will benefit from the study of pro-
gramming language concepts. After all, many other topics in computer science
are worthy of serious study. The following is what we believe to be a compelling
list of potential benefits of studying concepts of programming languages:

• Increased capacity to express ideas. It is widely believed that the depth at which
people can think is influenced by the expressive power of the language in
which they communicate their thoughts. Those with only a weak under-
standing of natural language are limited in the complexity of their thoughts,
particularly in depth of abstraction. In other words, it is difficult for people
to conceptualize structures they cannot describe, verbally or in writing.

Programmers, in the process of developing software, are similarly con-
strained. The language in which they develop software places limits on
the kinds of control structures, data structures, and abstractions they can
use; thus, the forms of algorithms they can construct are likewise limited.
Awareness of a wider variety of programming language features can reduce
such limitations in software development. Programmers can increase the
range of their software development thought processes by learning new
language constructs.

It might be argued that learning the capabilities of other languages does
not help a programmer who is forced to use a language that lacks those
capabilities. That argument does not hold up, however, because often, lan-
guage constructs can be simulated in other languages that do not support
those constructs directly. For example, a C programmer who had learned
the structure and uses of associative arrays in Perl (Christianson et al., 2012)
might design structures that simulate associative arrays in that language.
In other words, the study of programming language concepts builds an

1.1 Reasons for Studying Concepts of Programming Languages 27

appreciation for valuable language features and constructs and encourages
programmers to use them, even when the language they are using does not
directly support such features and constructs.

• Improved background for choosing appropriate languages. Some professional
programmers have had little formal education in computer science; rather,
they have developed their programming skills independently or through
 in- house training programs. Such training programs often limit instruction
to one or two languages that are directly relevant to the current projects
of the organization. Other programmers received their formal training
years ago. The languages they learned then are no longer used, and many
features now available in programming languages were not widely known
at the time. The result is that many programmers, when given a choice of
languages for a new project, use the language with which they are most
familiar, even if it is poorly suited for the project at hand. If these pro-
grammers were familiar with a wider range of languages and language con-
structs, they would be better able to choose the language with the features
that best address the problem.

Some of the features of one language often can be simulated in another
language. However, it is preferable to use a feature whose design has been
integrated into a language than to use a simulation of that feature, which
is often less elegant, more cumbersome, and less safe.

• Increased ability to learn new languages. Computer programming is still a rel-
atively young discipline, and design methodologies, software development
tools, and programming languages are still in a state of continuous evolu-
tion. This makes software development an exciting profession, but it also
means that continuous learning is essential. The process of learning a new
programming language can be lengthy and difficult, especially for someone
who is comfortable with only one or two languages and has never examined
programming language concepts in general. Once a thorough understand-
ing of the fundamental concepts of languages is acquired, it becomes far
easier to see how these concepts are incorporated into the design of the lan-
guage being learned. For example, programmers who understand the con-
cepts of object- oriented programming will have a much easier time learning
Ruby (Thomas et al., 2013) than those who have never used those concepts.

The same phenomenon occurs in natural languages. The better you
know the grammar of your native language, the easier it is to learn a sec-
ond language. Furthermore, learning a second language has the benefit of
teaching you more about your first language.

The TIOBE Programming Community issues an index (http://www
.tiobe.com/index.php/content/paperinfo/tpci/index.htm) that
is an indicator of the relative popularity of programming languages. For
example, according to the index, C, Java, and Objective- C were the three
most popular languages in use in February 2014.1 However, dozens of other

 1. Note that this index is only one measure of the popularity of programming languages, and
its accuracy is not universally accepted.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.htm
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.htm

28 Chapter 1 Preliminaries

languages were widely used at the time. The index data also show that the
distribution of usage of programming languages is always changing. The
number of languages in use and the dynamic nature of the statistics imply
that every software developer must be prepared to learn different languages.

Finally, it is essential that practicing programmers know the vocabulary
and fundamental concepts of programming languages so they can read and
understand programming language descriptions and evaluations, as well as
promotional literature for languages and compilers. These are the sources
of information needed in order to choose and learn a language.

• Better understanding of the significance of implementation. In learning the con-
cepts of programming languages, it is both interesting and necessary to touch
on the implementation issues that affect those concepts. In some cases, an
understanding of implementation issues leads to an understanding of why
languages are designed the way they are. In turn, this knowledge leads to
the ability to use a language more intelligently, as it was designed to be used.
We can become better programmers by understanding the choices among
programming language constructs and the consequences of those choices.

Certain kinds of program bugs can be found and fixed only by a pro-
grammer who knows some related implementation details. Another benefit
of understanding implementation issues is that it allows us to visualize
how a computer executes various language constructs. In some cases, some
knowledge of implementation issues provides hints about the relative effi-
ciency of alternative constructs that may be chosen for a program. For
example, programmers who know little about the complexity of the imple-
mentation of subprogram calls often do not realize that a small subprogram
that is frequently called can be a highly inefficient design choice.

Because this book touches on only a few of the issues of implementa-
tion, the previous two paragraphs also serve well as rationale for studying
compiler design.

• Better use of languages that are already known. Most contemporary program-
ming languages are large and complex. Accordingly, it is uncommon for a
programmer to be familiar with and use all of the features of a language
he or she uses. By studying the concepts of programming languages, pro-
grammers can learn about previously unknown and unused parts of the
languages they already use and begin to use those features.

• Overall advancement of computing. Finally, there is a global view of comput-
ing that can justify the study of programming language concepts. Although
it is usually possible to determine why a particular programming language
became popular, many believe, at least in retrospect, that the most popu-
lar languages are not always the best available. In some cases, it might be
concluded that a language became widely used, at least in part, because
those in positions to choose languages were not sufficiently familiar with
programming language concepts.

For example, many people believe it would have been better if ALGOL
60 (Backus et al., 1963) had displaced Fortran (McCracken, 1961) in the

