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Preface

Changes for the Eleventh Edition 

The goals, overall structure, and approach of this eleventh edition of 
Concepts of Programming Languages remain the same as those of the ten 
earlier editions. The principal goals are to introduce the fundamental 

constructs of contemporary programming languages and to provide the reader 
with the tools necessary for the critical evaluation of existing and future pro-
gramming languages. A secondary goal is to prepare the reader for the study of 
compiler design, by providing an in-depth discussion of programming language 
structures, presenting a formal method of describing syntax, and introducing 
approaches to lexical and syntactic analysis.

The eleventh edition evolved from the tenth through several different 
kinds of changes. To maintain the currency of the material, much of the dis-
cussion of older programming languages, particularly Ada and Fortran, has 
been removed. For example, the descriptions of Ada’s records, union types, and 
pointers were removed from Chapter 6. Likewise, the description of Ada’s for 
statement was removed from Chapter 8 and the discussion of Ada’s abstract 
data types was removed from Chapter 11.

On the other hand, a section on reflection that includes two complete 
program examples was added to Chapter 12, a section on exception handling 
in Python and Ruby was added to Chapter 14, and a table of the design choices 
of a few common languages for support for object-oriented programming was 
added to Chapter 12.

In some cases, material has been moved. For example, Section 9.10 was 
moved backward to become the new Section 9.8.

In one case, example program MAIN_2 in Chapter 10 was rewritten in 
JavaScript, previously having been written in Ada.

Chapter 12 was substantially revised, with several new paragraphs, two new 
sections, and numerous other changes to improve clarity.

The Vision 

This book describes the fundamental concepts of programming languages by 
discussing the design issues of the various language constructs, examining the 
design choices for these constructs in some of the most common languages, 
and critically comparing design alternatives.
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Any serious study of programming languages requires an examination of 
some related topics, among which are formal methods of describing the syntax 
and semantics of programming languages, which are covered in Chapter 3.  
Also, implementation techniques for various language constructs must be con-
sidered: Lexical and syntax analysis are discussed in Chapter 4, and implemen-
tation of subprogram linkage is covered in Chapter 10. Implementation of 
some other language constructs is discussed in various other parts of the book.

The following paragraphs outline the contents of the eleventh edition.

Chapter Outlines 

Chapter 1 begins with a rationale for studying programming languages. It then 
discusses the criteria used for evaluating programming languages and language 
constructs. The primary influences on language design, common design trade-
offs, and the basic approaches to implementation are also examined.

Chapter 2 outlines the evolution of the languages that are discussed in 
this book. Although no attempt is made to describe any language completely, 
the origins, purposes, and contributions of each are discussed. This historical 
overview is valuable, because it provides the background necessary to under-
standing the practical and theoretical basis for contemporary language design. 
It also motivates further study of language design and evaluation. Because none 
of the remainder of the book depends on Chapter 2, it can be read on its own, 
independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax 
of programming language—BNF. This is followed by a description of attribute 
grammars, which describe both the syntax and static semantics of languages. 
The difficult task of semantic description is then explored, including brief 
introductions to the three most common methods: operational, denotational, 
and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to 
those Computer Science departments that no longer require a compiler design 
course in their curricula. Similar to Chapter 2, this chapter stands alone and 
can be studied independently of the rest of the book, except for Chapter 3, on 
which it depends.

Chapters 5 through 14 describe in detail the design issues for the primary 
constructs of programming languages. In each case, the design choices for sev-
eral example languages are presented and evaluated. Specifically, Chapter 5 
covers the many characteristics of variables, Chapter 6 covers data types, and 
Chapter 7 explains expressions and assignment statements. Chapter 8 describes 
control statements, and Chapters 9 and 10 discuss subprograms and their imple-
mentation. Chapter 11 examines data abstraction facilities. Chapter 12 provides 
an in-depth discussion of language features that support object-oriented pro-
gramming (inheritance and dynamic method binding), Chapter 13 discusses 
concurrent program units, and Chapter 14 is about exception handling, along 
with a brief discussion of event handling.
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Chapters 15 and 16 describe two of the most important alternative pro-
gramming paradigms: functional programming and logic programming. 
However, some of the data structures and control constructs of functional 
programming languages are discussed in Chapters 6 and 8. Chapter 15 pres-
ents an introduction to Scheme, including descriptions of some of its primi-
tive functions, special forms, and functional forms, as well as some examples 
of simple functions written in Scheme. Brief introductions to ML, Haskell, 
and F# are given to illustrate some different directions in functional language 
design. Chapter 16 introduces logic programming and the logic programming 
language, Prolog.

To the Instructor 

In the junior-level programming language course at the University of Colorado 
at Colorado Springs, the book is used as follows: We typically cover Chapters 1 
and 3 in detail, and though students find it interesting and beneficial reading, 
Chapter 2 receives little lecture time due to its lack of hard technical content. 
Because no material in subsequent chapters depends on Chapter 2, as noted 
earlier, it can be skipped entirely, and because we require a course in compiler 
design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive 
programming experience in C++, Java, or C#. Chapters 10 through 14 are more 
challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level. 
Ideally, language processors for Scheme and Prolog should be available for 
students required to learn the material in these chapters. Sufficient material is 
included to allow students to dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the material 
in the last two chapters. Graduate courses, however, should be able to com-
pletely discuss the material in those chapters by skipping over some parts of 
the early chapters on imperative languages.

Supplemental Materials 

The following supplements are available to all readers of this book at www.
pearsonglobaleditions.com/Sebesta.

• A set of lecture note slides. PowerPoint slides are available for each chapter 
in the book.

• All of the figures from the book.

A companion Web site to the book is available at www.pearsonglobaleditions.com/
Sebesta. This site contains mini-manuals (approximately 100-page tutorials) on 
a handful of languages. These assume that the student knows how to program 

http://www.pearsonglobaleditions.com/Sebesta
http://www.pearsonglobaleditions.com/Sebesta
http://www.pearsonglobaleditions.com
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in some other language, giving the student enough information to complete 
the chapter materials in each language. Currently the site includes manuals for 
C++, C, Java, and Smalltalk.

Solutions to many of the problem sets are available to qualified instructors 
in our Instructor Resource Center at www.pearsonglobaleditions.com/Sebesta. 

language Processor Availability 
Processors for and information about some of the programming languages 
discussed in this book can be found at the following Web sites:

C, C++, Fortran, and Ada gcc.gnu.org
C# and F# microsoft.com
Java java.sun.com
Haskell haskell.org
Lua www.lua.org
Scheme www.plt-scheme.org/software/drscheme
Perl www.perl.com
Python www.python.org
Ruby www.ruby-lang.org

JavaScript is included in virtually all browsers; PHP is included in virtually all 
Web servers.

All this information is also included on the companion Web site.

http://www.pearsonglobaleditions.com/Sebesta
http://www.lua.org
http://www.plt-scheme.org/software/drscheme
http://www.perl.com
http://www.python.org
http://www.ruby-lang.org
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26      Chapter 1   Preliminaries

Before we begin discussing the concepts of programming languages, we must 
consider a few preliminaries. First, we explain some reasons why computer 
science students and professional software developers should study general 

concepts of language design and evaluation. This discussion is especially valuable 
for those who believe that a working knowledge of one or two programming lan-
guages is sufficient for computer scientists. Then, we briefly describe the major 
programming domains. Next, because the book evaluates language constructs and 
features, we present a list of criteria that can serve as a basis for such judgments. 
Then, we discuss the two major influences on language design: machine architecture 
and program design methodologies. After that, we introduce the various categories 
of programming languages. Next, we describe a few of the major  trade-  offs that 
must be considered during language design.

Because this book is also about the implementation of programming languages, 
this chapter includes an overview of the most common general approaches to imple-
mentation. Finally, we briefly describe a few examples of programming environments 
and discuss their impact on software production.

1.1 Reasons for Studying Concepts of Programming Languages

It is natural for students to wonder how they will benefit from the study of pro-
gramming language concepts. After all, many other topics in computer science 
are worthy of serious study. The following is what we believe to be a compelling 
list of potential benefits of studying concepts of programming languages:

• Increased capacity to express ideas. It is widely believed that the depth at which 
people can think is influenced by the expressive power of the language in 
which they communicate their thoughts. Those with only a weak under-
standing of natural language are limited in the complexity of their thoughts, 
particularly in depth of abstraction. In other words, it is difficult for people 
to conceptualize structures they cannot describe, verbally or in writing.

Programmers, in the process of developing software, are similarly con-
strained. The language in which they develop software places limits on 
the kinds of control structures, data structures, and abstractions they can 
use; thus, the forms of algorithms they can construct are likewise limited. 
Awareness of a wider variety of programming language features can reduce 
such limitations in software development. Programmers can increase the 
range of their software development thought processes by learning new 
language constructs.

It might be argued that learning the capabilities of other languages does 
not help a programmer who is forced to use a language that lacks those 
capabilities. That argument does not hold up, however, because often, lan-
guage constructs can be simulated in other languages that do not support 
those constructs directly. For example, a C programmer who had learned 
the structure and uses of associative arrays in Perl (Christianson et al., 2012) 
might design structures that simulate associative arrays in that language. 
In other words, the study of programming language concepts builds an 
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appreciation for valuable language features and constructs and encourages 
programmers to use them, even when the language they are using does not 
directly support such features and constructs.

• Improved background for choosing appropriate languages. Some professional 
programmers have had little formal education in computer science; rather, 
they have developed their programming skills independently or through 
 in-  house training programs. Such training programs often limit instruction 
to one or two languages that are directly relevant to the current projects 
of the organization. Other programmers received their formal training 
years ago. The languages they learned then are no longer used, and many 
features now available in programming languages were not widely known 
at the time. The result is that many programmers, when given a choice of 
languages for a new project, use the language with which they are most 
familiar, even if it is poorly suited for the project at hand. If these pro-
grammers were familiar with a wider range of languages and language con-
structs, they would be better able to choose the language with the features 
that best address the problem.

Some of the features of one language often can be simulated in another 
language. However, it is preferable to use a feature whose design has been 
integrated into a language than to use a simulation of that feature, which 
is often less elegant, more cumbersome, and less safe.

• Increased ability to learn new languages. Computer programming is still a rel-
atively young discipline, and design methodologies, software development 
tools, and programming languages are still in a state of continuous evolu-
tion. This makes software development an exciting profession, but it also 
means that continuous learning is essential. The process of learning a new 
programming language can be lengthy and difficult, especially for someone 
who is comfortable with only one or two languages and has never examined 
programming language concepts in general. Once a thorough understand-
ing of the fundamental concepts of languages is acquired, it becomes far 
easier to see how these concepts are incorporated into the design of the lan-
guage being learned. For example, programmers who understand the con-
cepts of  object-  oriented programming will have a much easier time learning 
Ruby (Thomas et al., 2013) than those who have never used those concepts.

The same phenomenon occurs in natural languages. The better you 
know the grammar of your native language, the easier it is to learn a sec-
ond language. Furthermore, learning a second language has the benefit of 
teaching you more about your first language.

The TIOBE Programming Community issues an index (http://www 
.tiobe.com/index.php/content/paperinfo/tpci/index.htm) that 
is an indicator of the relative popularity of programming languages. For 
example, according to the index, C, Java, and  Objective-  C were the three 
most popular languages in use in February 2014.1 However, dozens of other 

 1. Note that this index is only one measure of the popularity of programming languages, and 
its accuracy is not universally accepted.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.htm
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.htm
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languages were widely used at the time. The index data also show that the 
distribution of usage of programming languages is always changing. The 
number of languages in use and the dynamic nature of the statistics imply 
that every software developer must be prepared to learn different languages.

Finally, it is essential that practicing programmers know the vocabulary 
and fundamental concepts of programming languages so they can read and 
understand programming language descriptions and evaluations, as well as 
promotional literature for languages and compilers. These are the sources 
of information needed in order to choose and learn a language.

• Better understanding of the significance of implementation. In learning the con-
cepts of programming languages, it is both interesting and necessary to touch 
on the implementation issues that affect those concepts. In some cases, an 
understanding of implementation issues leads to an understanding of why 
languages are designed the way they are. In turn, this knowledge leads to 
the ability to use a language more intelligently, as it was designed to be used. 
We can become better programmers by understanding the choices among 
programming language constructs and the consequences of those choices.

Certain kinds of program bugs can be found and fixed only by a pro-
grammer who knows some related implementation details. Another benefit 
of understanding implementation issues is that it allows us to visualize 
how a computer executes various language constructs. In some cases, some 
knowledge of implementation issues provides hints about the relative effi-
ciency of alternative constructs that may be chosen for a program. For 
example, programmers who know little about the complexity of the imple-
mentation of subprogram calls often do not realize that a small subprogram 
that is frequently called can be a highly inefficient design choice.

Because this book touches on only a few of the issues of implementa-
tion, the previous two paragraphs also serve well as rationale for studying 
compiler design.

• Better use of languages that are already known. Most contemporary program-
ming languages are large and complex. Accordingly, it is uncommon for a 
programmer to be familiar with and use all of the features of a language 
he or she uses. By studying the concepts of programming languages, pro-
grammers can learn about previously unknown and unused parts of the 
languages they already use and begin to use those features.

• Overall advancement of computing. Finally, there is a global view of comput-
ing that can justify the study of programming language concepts. Although 
it is usually possible to determine why a particular programming language 
became popular, many believe, at least in retrospect, that the most popu-
lar languages are not always the best available. In some cases, it might be 
concluded that a language became widely used, at least in part, because 
those in positions to choose languages were not sufficiently familiar with 
programming language concepts.

For example, many people believe it would have been better if ALGOL 
60 (Backus et al., 1963) had displaced Fortran (McCracken, 1961) in the 




